
Android
Open Source Project
Stefan Mitev



Stefan Mitev

- Windsurfer
- Former web & desktop developer
- Android developer
- Working at Pixplicity



Overview
● The Android stack
● Application fundamentals
● Application manifest

● AOSP - what, who, why, how
● IDE integration



Android



Android Stack

the bridge between the software and the hardware
+ wake locks, Binder IPC driver, mobile embedded specific features

interface between the framework and the hardware drivers
(sensors, graphics, bluetooth, etc.)

native & core libs, heart of Android, Dalvik VM

content providers, managers
(such as Activity-, Location-, PackageManager)

launcher, browser, gallery, calculator



- Usually apps are written in Java
- Apps are linux users
- Apps live in their own security sandbox
- Each app has its own VM

Application fundamentals



Application components

- Activities
- Services
- Content Providers
- Broadcast Receivers

screen where UI is drawn

for long-running background operations, no UI
managing and encapsulating structured data
listeners for system or application events



Application Manifest
<?xml version="1.0" encoding="utf-8"?>

<manifest package="...">

<uses-permission />
<uses-feature /> ...

<application>
    <activity>
        <intent-filter>
            <action ... /> <category ... /> <data ... />
        </intent-filter>
    </activity>

    <service>
        <intent-filter> ... </intent-filter>
    </service>

    <receiver>
        <intent-filter> ... </intent-filter>
    </receiver>

    <provider/>
</application>

</manifest>

- Essential information for the Android 
System about a particular application

- The PackageManager inspects the intent 
filters and its list so that the platform 
know which app is capable of capturing 
which intents.

- Part of the information is also used by 
the Google Play Store.

http://developer.android.com/guide/topics/manifest/manifest-element.html
http://developer.android.com/guide/topics/manifest/manifest-element.html
http://developer.android.com/guide/topics/manifest/manifest-element.html


AOSP



Available for..



Custom distribution? Why?

- modify the Android SDK
- modify existing apps
- add our libraries
- add our system apps
- change boot animation
- customize the user experience
- tailor the platform for specific use case
- etc.



Establish a build 
environment

Requirements

- Linux or Mac OS X or Win+VM
- 64bit OS for Android > 2.3.x
- >= 8 GB RAM/Swap
- >=  (guess!) free space (SSD is a +)

- Python 2.6 - 2.7
- GNU Make 3.81 - 3.82
- JDK 7 for Android >= 5.0
- Git >= 1.7
- Repo tool



Source code organization



The AOSP manifest
<manifest>
  <remote name="aosp"
             fetch="https://android.googlesource.com/"/>

  <default revision="refs/tags/android-5.1.1_r1"
             remote="aosp"
             sync-j="4" />

  <project path="frameworks/base" name="
platform/frameworks/base" groups="pdk-cw-fs" />
  <project path="packages/apps/Browser" name="
platform/packages/apps/Browser" />
  <project path="packages/apps/Launcher3" name="
platform/packages/apps/Launcher3" />
</manifest>



Prepare Repo

1. Create a bin/ directory in your home directory and include it in your path
$ mkdir ~/bin

$ PATH=~/bin:$PATH

2. Download the tool
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

3. Make it executable
$ chmod a+x ~/bin/repo



Initialize a Repo client

1. Create an empty working directory
$ mkdir ~/aosp

2. Initialize the Repo client into your working directory, by checking out from a branch/tag*
$ cd ~/aosp && repo init -u https://android.googlesource.com/platform/manifest -b android-5.1.1_r1

3. Done! Now you should have a .repo subdirectory created.

*List with branches/tags: http://source.android.com/source/build-numbers.
html#source-code-tags-and-builds 

http://source.android.com/source/build-numbers.html#source-code-tags-and-builds
http://source.android.com/source/build-numbers.html#source-code-tags-and-builds
http://source.android.com/source/build-numbers.html#source-code-tags-and-builds


Pull the Android Source Tree

1. Execute 
$ repo sync

2. Waaaait for it… :)



Source from the envsetup.sh script
$ cd ~/aosp

$ . build/envsetup.sh

Setup the env

Building AOSP



Choose a target
Use “lunch” to choose what kind of device you want to build for.

$ lunch <product_name>[_<sub-product_name>]-<build_variant>

ex.   $ lunch aosp_grouper-eng
$ lunch aosp_x86_64-eng

<product> - set of modules to be included among various 
configurations.

● generic - default set of packages

● full - full set of packages, with all apps and locales

● aosp - it actually inherits everything from full

● sdk - packages needed to build the SDK

● user - variant with limited access that is suited for production

● userdebug - like “user” but with root access and debuggability

● eng - variant with development configuration with additional debugging tools

<build_variant>



Installing drivers
- Drivers for Nexus devices can be downloaded from 
https://developers.google.com/android/nexus/drivers

What about Nexus 9, though? What’s the catch?

- Each set of binaries comes as a self-extracting script in a 
compressed archive.

In order to make sure the newly installed drivers are properly 
taken into account after being extracted, we have to exec

$ make clean

https://developers.google.com/android/nexus/drivers
https://developers.google.com/android/nexus/drivers


Building the AOSP

$ make -j8
… waaaaaaait for it…. waait for it….



Flashing a device

1. Unlock the bootloader*
$ fastboot oem unlock

2. Boot into fastboot
$ adb reboot bootloader

3. Flash the images
$ fastboot flashall -w

* Depending on the device, it’s a matter of executing 
a simple shell command or using an external 
software.

Flash a real device

1. Execute
$ emulator

Flash an emulator



Tips

Use compiler cache for C/C++ code
 $ export USE_CCACHE=1
 $ export CACHE_DIR=/<path>/.ccache
 $ ~/aosp/prebuilts/misc/linux-x86/ccache/ccache 
-M 100G

Only recreate the system image files

Build only certain modules

   
$ cd ~/aosp

mmm packages/apps/Music

mmm packages/apps/Music packages/apps/Calendar

Syncing the changes directly onto a device
$ adb sync

$ adb shell stop // Only for framework modules

$ adb shell start

$ make snod



Android Studio Integration
1. Edit studio.vmoptions or studio64.vmoptions to increase the allocated heap size on startup and 

its maximum size. (Use idea[64].vmoptions for IntelliJ)
-Xms750m

-Xmx800m

2. Edit idea.properties and change the max file size the IDE should provide code assistance for
idea.max.intellisense.filesize=5000

3. Compile the idegen tools (if it’s not yet)

$ cd ~/aosp/development/tools/idegen; mm

4. Create a shadow directory of the working directory
$ mkdir ~/aosp-shadow && cd ~/aosp-shadow && lndir ~/aosp

5. Run the idegen tool
$ cd ~/aosp-shadow; development/tools/idegen/idegen.sh



Android Studio Integration continued
6. Open android.ipr with Android Studio and you should have the AOSP imported.

7. Add Oracle Java 7 SDK without any libraries.

8. Navigate to File->Project structure and remove all dependencies that end with a .jar

9. Go to Sources tab and expand out/target/common/R.

10. Right click on it and click “Source”. Then apply the changes.

Note: Consider turning “Power save mode” on in order to stop the code inspection.



Thanks!
Stefan Mitev
stefan@pixplicity.com
mr.mitew@gmail.com


