&R Android
'-' Open Source Project

Stefan Mitev

Stefan Mitev

- Windsurfer

- Former web & desktop developer
- Android developer

- Working at Pixplicity

The Android stack
Application fundamentals
Application manifest

Overview

AOSP - what, who, why, how
IDE integration

Androld

Android Stack

launcher, browser, gallery, calculator

content providers, managers
(such as Activity-, Location-, PackageManager)

native & core libs, heart of Android, Dalvik VM

interface between the framework and the hardware drivers
(sensors, graphics, bluetooth, etc.)

the bridge between the software and the hardware
+ wake locks, Binder IPC driver, mobile embedded specific features

Application fundamentals

AAAAAA

Usually apps are written in Java Linux

Apps are linux users

Slll.t Router o Java

Compi

rrrrr

p JSON

cPUPragma tic):

Operating
““““““ NFS UBIFS

Systems e
Programmers
mse GPU Apache

MaStﬂfV PPP Image

Prutocul
Buﬁers

Apps live in their own security sandbox Alldrllld ,,,,,,
Each app has its own VM Wi Fstiot
Pla form

en#‘MARM ﬂﬂml"“*“ N rofllm Pyth
= on
SNetworks: ystem

? Simplicity Realtime
36 vt Binder

CCCCC
cccc

loget LOgcat v

Simplicity pebugping:-..

AFFSZTHVI'GI v B Fyp TIII XML WIFI w

" """""" rnﬂpurmn! Java R-%g!}lm.e TCP/IP cURL s

u er t & o
ra III g I “ u Device

Android " @ Automotive

Fast ootthn

Cloud
GPU Computer g cURL

ey u o8 whenis SO LI
LGN utomutlve i)

j s Jaroconf Routerl’ragmatu:

Bﬁe it TCP/IP Ma mrvd lrrszu M Ax Programmers
ava nasepen
Purpose Dehuggmg

;;;;;;; Purpose Security

nnnnnn

uuuuuuuuuuuuuuu

Application components

- Activities screen where Ul is drawn
= SerVICeS for long-running background operations, no Ul
- Content Providers ... managing and encapsulating structured data

- Broadcast Receivers ... listeners for system or application events

Application Manifest

<?xml version="1.0" encoding="utf-8"?>

- Essential information for the Android <manifest package="...">
System about a particular application o
- The PackageManager inspects the intent CUeosfonture 15 »

filters and its list so that the platform
know which app is capable of capturing <application>
<activity>

which intents. cintent-fi
- Part of the information is also used by m /> <category ... /> <data ... />
Gl

the Google Play Store. < /actifi{ciyn:en h

<service>
<intent-filter> ... </intent-filter>
</service>

<receiver>
<intent-filter> ... </intent-filter>
</receiver>

<provider/>

</application>
</manifest>

http://developer.android.com/guide/topics/manifest/manifest-element.html
http://developer.android.com/guide/topics/manifest/manifest-element.html
http://developer.android.com/guide/topics/manifest/manifest-element.html

AOSP

Available for..

SONY

Custom distribution? Why?

modify the Android SDK

modify existing apps

add our libraries amazoncom
add our system apps

change boot animation

customize the user experience

o
tailor the platform for specific use case f Iﬂ

cyanogenmod PHONE

Requirements

Linux or Mac OS X or Win+VM
64bit OS for Android > 2.3.x
Establish a build >= 8 GB RAM/Swap
: >= (quess!)free space (SSDis a +)
environment Python 2.6 - 2.7

GNU Make 3.81-3.82
JDK 7 for Android >= 5.0
Git>=17

Repo tool

Source code organization li ‘

oIt

The AOSP manifest

<manifest>
<remote name="aosp"

fetch="https://android.googlesource.com/"/>

<default revision="refs/tags/android-5.1.1_r1"
remote="aosp"
sync-j="4" />

<project path="frameworks/base" nhame="
platform/frameworks/base" groups="pdk-cw-fs" />

<project path="packages/apps/Browser" name="
platform/packages/apps/Browser" />

<project path="packages/apps/Launcher3" name=)
platform/packages/apps/Launcher3" />
</manifest>

Prepare Repo

1. Create a bin/ directory in your home directory and include it in your path
$ mkdir ~/bin
$ PATH=~/bin:$PATH

2. Download the tool
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

3. Make it executable
$ chmod a+x ~/bin/repo

Initialize a Repo client

1. Create an empty working directory
$ mkdir ~/aosp

2. Initialize the Repo client into your working directory, by checking out from a branch/tag*
$ cd ~/aosp && repo init -u https://android.googlesource.com/platform/manifest -b android-5.1.1 r1

3. Donel Now you should have a .repo subdirectory created.

"List with branches/tags: http.//source.android.com/source/build-numbers.
html#source-code-tags-and-builds

http://source.android.com/source/build-numbers.html#source-code-tags-and-builds
http://source.android.com/source/build-numbers.html#source-code-tags-and-builds
http://source.android.com/source/build-numbers.html#source-code-tags-and-builds

™

Pull the Android Source Tree

1. Execute
$ repo sync

2. Waaaait for it..)

Setup the env

Source from the envsetup.sh script
$ cd ~/aosp
$. build/envsetup.sh

Building AOSP

Choose a target

Use “lunch” to choose what kind of device you want to build for.
$ lunch <product_name>[<sub-product _name>]-<build variant>

ex. $ lunch aosp_grouper-eng
$ Llunch aosp_x86_64-eng

<product> - set of modules to be included among various
configurations.

e generic - default set of packages

e full - full set of packages, with all apps and locales
e gosp - it actually inherits everything from full

e sdk - packages needed to build the SDK

<build _variant>
e user - variant with limited access that is suited for production
e userdebug - like "user” but with root access and debuggability
e eng - variant with development configuration with additional debugging tools

pZIx)

Installing drivers

- Drivers for Nexus devices can be downloaded from
https://developers.google.com/android/nexus/drivers

What about Nexus 9, though? What's the catch?

- Each set of binaries comes as a self-extracting script in a
compressed archive.

In order to make sure the newly installed drivers are properly
taken into account after being extracted, we have to exec
$ make clean

https://developers.google.com/android/nexus/drivers
https://developers.google.com/android/nexus/drivers

Building the AOSP &‘4
$ make -j8

ait for it... waait for it..

Flash a real device

1. Unlock the bootloader®
$ fastboot oem unlock

Boot into fastboot
$ adb reboot bootloader

Flash the images
$ fastboot flashall -w

Flashing a device

Flash an emulator

1. Execute
$ emulator

* Depending on the device, it's a matter of executing
a simple shell command or using an external
software.

Tips

Use compiler cache for C/C++ code

$ export USE_CCACHE=1

$ export CACHE_DIR=/<path>/.ccache

$ ~/aosp/prebuilts/misc/linux-x86/ccache/ccache
-M 100G

Build only certain modules

$ cd ~/aosp

mmm packages/apps/Music

mmm packages/apps/Music packages/apps/Calendar

Only recreate the system image files
$ make snod

Syncing the changes directly onto a device

$ adb sync
$ adb shell stop // Only for framework modules
$ adb shell start

Android Studio Integration

1. Edit studio.vmoptions or studio64.vmoptions to increase the allocated heap size on startup and

its maximum size. (Use ideal64].vmoptions for IntelliJ)
-Xms750m
-Xmx800m

2. Edit idea properties and change the max file size the IDE should provide code assistance for

idea.max.intellisense.filesize=5000

3. Compile the idegen tools (if it's not yet)
$ cd ~/aosp/development/tools/idegen; mm

4. Create a shadow directory of the working directory
$ mkdir ~/aosp-shadow && cd ~/aosp-shadow && lndir ~/aosp

5. Run the idegen tool
$ cd ~/aosp-shadow; development/tools/idegen/idegen.sh

Android Studio Integration continued

6. Open android.ipr with Android Studio and you should have the AOSP imported.

7. Add Oracle Java 7 SDK without any libraries.

8. Navigate to File->Project structure and remove all dependencies that end with a jar
9. Goto Sourcestab and expand out/target/common/R.

10. Right click on it and click “Source”. Then apply the changes.

Note: Consider turning “Power save mode” on in order to stop the code inspection.

p-
|]

Thanks!

Stefan Mitev
stefan@pixplicity.com
mr.mitew@gmail.com

